maxvit_base¶
The maxvit_base function constructs a high-capacity MaxViT model variant designed for more complex tasks, such as large-scale image classification. It offers deeper layers in the middle stages for enhanced expressiveness.
Total Parameters: 96,626,776
Function Signature¶
def maxvit_base(
in_channels: int = 3,
num_classes: int = 1000,
**kwargs
) -> MaxViT
Parameters¶
in_channels (int, optional): Number of input image channels. Default is 3.
num_classes (int, optional): Number of classification categories. Default is 1000.
kwargs (any): Additional keyword arguments passed to the
MaxViT
constructor.
Model Configuration¶
This base preset uses the following configuration:
depths: (2, 6, 14, 2) — More blocks in the deeper stages.
channels: (96, 192, 384, 768)
embed_dim: 64
Example¶
import lucid
from lucid.models.transformer import maxvit_base
model = maxvit_base()
input_tensor = lucid.randn(1, 3, 224, 224)
output = model(input_tensor)
print(output.shape) # (1, 1000)
Note
The maxvit_base variant is suitable for high-resolution datasets and larger model capacity benchmarks.