resnest_200

lucid.models.resnest_200(num_classes: int = 1000, **kwargs) ResNeSt

The resnest_200 function creates an instance of the ResNeSt-200 model, a lightweight variant of the ResNeSt architecture, tailored for tasks requiring fewer parameters.

Total Parameters: 70,201,288

Function Signature

@register_model
def resnest_200(num_classes: int = 1000, **kwargs) -> ResNeSt

Parameters

  • num_classes (int, optional): Number of output classes for the classification task. Defaults to 1000.

  • kwargs (dict, optional): Additional keyword arguments passed to the ResNeSt constructor, allowing customization of the model’s hyperparameters such as base_width, stem_width, cardinality, and radix.

Returns

  • ResNeSt: An instance of the ResNeSt-200 model, configured with the provided parameters.

Layer Configuration

The layer configuration for ResNeSt-200 is [3, 24, 36, 3], which represents the number of blocks in each of the four stages of the ResNet architecture:

  1. Stage 1: 3 block

  2. Stage 2: 24 block

  3. Stage 3: 36 block

  4. Stage 4: 3 block

Examples

from lucid.models import resnest_200

# Create a ResNeSt-200 model for 10-class classification
model = resnest_200(num_classes=10, base_width=64, stem_width=32)

# Forward pass with a sample input
input_tensor = lucid.random.randn((1, 3, 224, 224))
output = model(input_tensor)
print(output.shape)  # Output: (1, 10)