convnext_v2_base¶
- lucid.models.convnext_v2_base(num_classes: int = 1000, **kwargs) ConvNeXt_V2 ¶
The convnext_v2_base creates a ConvNeXt-v2 variant with a standard configuration, designed for robust performance on diverse image classification tasks. This variant strikes a balance between scalability and accuracy, making it ideal for most general-purpose applications.
Total Parameters: 88,717,800
Function Signature¶
@register_model
def convnext_v2_base(num_classes: int = 1000, **kwargs) -> ConvNeXt_V2
Parameters¶
num_classes (int, optional): The number of output classes for classification. Default is 1000.
kwargs: Additional keyword arguments for customizing the ConvNeXt-v2 architecture.
Returns¶
model (ConvNeXt_V2): An instance of the ConvNeXt-v2 class configured as the base variant.
Examples¶
Basic Example
import lucid.models as models
# Create convnext_v2_base with default 1000 classes
model = models.convnext_v2_base(num_classes=1000)
# Input tensor with shape (1, 3, 224, 224)
input_ = lucid.random.randn(1, 3, 224, 224)
# Perform forward pass
output = model(input_)
print(output.shape) # Shape: (1, 1000)