nn.functional.adaptive_max_pool3d¶
- lucid.nn.functional.adaptive_max_pool3d(input_: Tensor, output_size: int | tuple[int, int, int]) Tensor ¶
Applies 3D adaptive max pooling over a volume input to reach a desired depth, height, and width.
Function Signature¶
def adaptive_max_pool3d(input_: Tensor, output_size: int | tuple[int, int, int]) -> Tensor
Parameters¶
input_ (Tensor): The input tensor of shape \((N, C, D, H, W)\).
output_size (int or tuple of int): Target output shape \((D_{out}, H_{out}, W_{out})\).
Returns¶
Tensor: Tensor of shape \((N, C, D_{out}, H_{out}, W_{out})\).
Behavior¶
Kernel size and stride are computed in all three spatial dimensions to match the given output size, and max pooling is performed over each resulting subvolume.
Examples¶
from lucid.nn.functional import adaptive_max_pool3d
input_ = Tensor.ones((1, 1, 8, 8, 8))
output = adaptive_max_pool3d(input_, output_size=(2, 2, 2))
print(output.shape) # (1, 1, 2, 2, 2)