lr_scheduler.ExponentialLR

class lucid.optim.lr_scheduler.ExponentialLR(optimizer: Optimizer, gamma: float, last_epoch: int = -1, verbose: bool = False)

The ExponentialLR learning rate scheduler reduces the learning rate exponentially at every epoch using a fixed multiplicative factor (gamma). This allows for smooth and continuous learning rate decay.

Class Signature

class ExponentialLR(
    optimizer: Optimizer,
    gamma: float,
    last_epoch: int = -1,
    verbose: bool = False
)

Parameters

  • optimizer (Optimizer): The optimizer whose learning rate needs to be scheduled.

  • gamma (float): Multiplicative factor for learning rate decay at each epoch.

  • last_epoch (int, optional): The index of the last epoch when resuming training. Default: -1.

  • verbose (bool, optional): If True, logs learning rate updates at each step. Default: False.

Mathematical Formula

The learning rate at epoch \(t\) is computed as:

\[\eta_t = \eta_0 \cdot \gamma^t\]

Where: - \(\eta_t\) is the learning rate at epoch \(t\). - \(\eta_0\) is the initial learning rate. - \(\gamma\) is the decay factor.

../../_images/exponential_lr.png

Methods

  • get_lr() -> list[float]: Computes the updated learning rate(s) using exponential decay.

  • step(epoch: Optional[int] = None) -> None: Updates the learning rate based on the current epoch.

Usage Example

import lucid.optim as optim
from lucid.optim.lr_scheduler import ExponentialLR

optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)

for epoch in range(10):
    optimizer.step()
    scheduler.step()
    print(f"Epoch {epoch+1}, Learning Rate: {scheduler.last_lr}")

Note

ExponentialLR is useful for continuous and gradual decay of the learning rate, allowing smoother adaptation to optimization progress.