lucid.ones¶
- lucid.ones(*shape: int, dtype: type[bool | int | float | complex] | Numeric | None = None, requires_grad: bool = False, keep_grad: bool = False, device: Literal['cpu', 'gpu'] = 'cpu') Tensor ¶
- lucid.ones(shape: list[int] | tuple[int], /, dtype: type[bool | int | float | complex] | Numeric | None = None, requires_grad: bool = False, keep_grad: bool = False, device: Literal['cpu', 'gpu'] = 'cpu') Tensor
The ones function creates a tensor filled with ones of the specified shape and data type.
Function Signature¶
def ones(
shape: _ShapeLike,
dtype: Any = np.float32,
requires_grad: bool = False,
keep_grad: bool = False,
device: _DeviceType = "cpu",
) -> Tensor
Parameters¶
- shape (_ShapeLike):
The shape of the output tensor. Can be a list or tuple of integers.
- dtype (Any, optional):
The data type of the elements in the tensor. Defaults to np.float32.
- requires_grad (bool, optional):
If True, the resulting tensor will be part of the computation graph and capable of tracking gradients. Defaults to False.
- keep_grad (bool, optional):
If True, the gradient history will be preserved even if the tensor does not require gradients. Defaults to False.
Returns¶
- Tensor:
A tensor filled with ones, having the specified shape and data type.
Example¶
>>> import lucid
>>> o = lucid.ones((2, 3))
>>> print(o)
Tensor([[1. 1. 1.]
[1. 1. 1.]])
Note
This function is commonly used for initialization purposes in neural networks or other numerical computations.
Gradient-related parameters allow flexibility in gradient tracking for differentiable operations.