lr_scheduler.LambdaLR¶
- class lucid.optim.lr_scheduler.LambdaLR(lr_lambda: Callable[[int], float], optimizer: Optimizer, last_epoch: int = -1, verbose: bool = False)¶
The LambdaLR learning rate scheduler allows the user to define a custom learning rate scaling function (lr_lambda). This provides flexibility to adjust the learning rate dynamically based on epoch progress.
Class Signature¶
class LambdaLR(
optimizer: Optimizer,
lr_lambda: Callable[[int], float],
last_epoch: int = -1,
verbose: bool = False
)
Parameters¶
optimizer (Optimizer): The optimizer whose learning rate needs to be scheduled.
lr_lambda (Callable[[int], float]): A function that takes an epoch index and returns a scaling factor for the learning rate.
last_epoch (int, optional): The index of the last epoch when resuming training. Default: -1.
verbose (bool, optional): If True, logs learning rate updates at each step. Default: False.
Mathematical Formula¶
The learning rate at epoch \(t\) is computed as:
Where: - \(\eta_t\) is the learning rate at epoch \(t\). - \(\eta_0\) is the initial learning rate. - \(f(t)\) is the user-defined function (lr_lambda) applied at epoch \(t\).
Methods¶
get_lr() -> list[float]: Computes the updated learning rate(s) using the lambda function.
step(epoch: Optional[int] = None) -> None: Updates the learning rate based on the current epoch.
Usage Example¶
import lucid.optim as optim
from lucid.optim.lr_scheduler import LambdaLR
optimizer = optim.SGD(model.parameters(), lr=0.1)
lambda_fn = lambda epoch: 0.95 ** epoch # Exponential decay function
scheduler = LambdaLR(optimizer, lr_lambda=lambda_fn)
for epoch in range(10):
optimizer.step()
scheduler.step()
print(f"Epoch {epoch+1}, Learning Rate: {scheduler.last_lr}")
Note
LambdaLR is highly flexible and allows users to define complex learning rate schedules by providing a custom function.