nn.functional.selu

lucid.nn.functional.selu(input_: Tensor) Tensor

The selu function applies the Scaled Exponential Linear Unit activation function element-wise to the input tensor. SELU is designed to induce self-normalizing properties in neural networks, helping to maintain the mean and variance of activations throughout the network.

Function Signature

def selu(input_: Tensor) -> Tensor

Parameters

  • input_ (Tensor):

    The input tensor of any shape.

Returns

  • Tensor:

    A new Tensor where each element is the result of applying the SELU function to the corresponding element in input_. If input_ requires gradients, the resulting tensor will also require gradients.

Forward Calculation

The forward calculation for the selu operation is:

\[\begin{split}\mathbf{out} = \lambda \cdot \begin{cases} \mathbf{input\_} & \text{if } \mathbf{input\_} > 0 \\ \alpha \cdot (\exp(\mathbf{input\_}) - 1) & \text{otherwise} \end{cases}\end{split}\]

Where: - \(\lambda \approx 1.0507\) - \(\alpha \approx 1.6733\)

Backward Gradient Calculation

For the tensor input_ involved in the selu operation, the gradient with respect to the output (out) is computed as follows:

Gradient with respect to \(\mathbf{input\_}\):

\[\begin{split}\frac{\partial \mathbf{out}}{\partial \mathbf{input\_}} = \lambda \cdot \begin{cases} 1 & \text{if } \mathbf{input\_} > 0 \\ \alpha \cdot \exp(\mathbf{input\_}) & \text{otherwise} \end{cases}\end{split}\]

Examples

Using selu on a tensor:

>>> import lucid.nn.functional as F
>>> input_ = Tensor([-1.0, 0.0, 2.0], requires_grad=True)
>>> out = F.selu(input_)
>>> print(out)
Tensor([-1.7581, 0.0, 2.1014], grad=None)

Backpropagation computes gradients for input_:

>>> out.backward()
>>> print(input_.grad)
[0.3679, 1.0507, 1.0507]