se_resnet_101¶
Overview¶
The se_resnet_101 function constructs an SE-ResNet-101 model, a deep residual network with SE blocks for adaptive feature recalibration, designed for large-scale image classification tasks.
Total Parameters: 49,326,872
Function Signature¶
@register_model
def se_resnet_101(num_classes: int = 1000, **kwargs) -> SENet:
Parameters¶
num_classes (int, optional): Number of output classes for the classification task. Default is 1000.
kwargs: Additional keyword arguments to customize the model.
Returns¶
SENet: An instance of the SE-ResNet-101 model.
Examples¶
Creating an SE-ResNet-101 model for 1000 classes:
model = se_resnet_101(num_classes=1000)
print(model)
Note
SE-ResNet-101 uses a configuration of [3, 4, 23, 3] for its layers.
Incorporates _SEResNetBottleneck for SE operations.
Initializes weights internally unless specified otherwise through kwargs.