nn.AvgPool2d¶
- class lucid.nn.AvgPool2d(kernel_size: int | tuple[int, ...] = 1, stride: int | tuple[int, ...] = 1, padding: int | tuple[int, ...] = 0)¶
The AvgPool2d module applies a two-dimensional average pooling operation over an input signal composed of several input channels. This layer is commonly used in convolutional neural networks to reduce the spatial dimensions (height and width) of the input, thereby reducing the number of parameters and computation in the network.
Average pooling summarizes the features present in patches of the input by computing the average value within each window, helping to make the representation approximately invariant to small translations of the input.
Class Signature¶
class lucid.nn.AvgPool2d(
kernel_size: int | tuple[int, ...] = 1,
stride: int | tuple[int, ...] = 1,
padding: int | tuple[int, ...] = 0
)
Parameters¶
- kernel_size (int or tuple[int, …], optional):
Size of the window to take an average over. Can be a single integer or a tuple specifying the size in each spatial dimension. Default is 1.
- stride (int or tuple[int, …], optional):
Stride of the window. Can be a single integer or a tuple specifying the stride in each spatial dimension. If not provided, it defaults to the same value as kernel_size. Default is 1.
- padding (int or tuple[int, …], optional):
Zero-padding added to both sides of the input. Can be a single integer or a tuple specifying the padding in each spatial dimension. Default is 0.
Attributes¶
None
Forward Calculation¶
The AvgPool2d module performs the following operation:
Where:
\(\mathbf{x}\) is the input tensor of shape \((N, C, H_{in}, W_{in})\).
\(\mathbf{y}\) is the output tensor of shape \((N, C, H_{out}, W_{out})\).
\(k_h\) and \(k_w\) are the kernel heights and widths.
\(s_h\) and \(s_w\) are the strides for height and width.
\(p_h\) and \(p_w\) are the padding for height and width.
\(N\) is the batch size.
\(C\) is the number of channels.
\(H_{in}\), \(W_{in}\) are the height and width of the input.
\(H_{out}\), \(W_{out}\) are the height and width of the output, determined by the pooling parameters.
Backward Gradient Calculation¶
During backpropagation, the gradient with respect to the input is computed by distributing the gradient from each output element equally to all elements in the corresponding pooling window.
Where:
\(\mathbf{y}_{i,j}\) is the output at position \((i, j)\).
\(\mathbf{x}_{m,n}\) is the input at position \((m, n)\).
This ensures that the gradient is appropriately averaged and propagated back to the input tensor.
Examples¶
Using `AvgPool2d` with a simple input tensor:
>>> import lucid.nn as nn
>>> input_tensor = Tensor([[
... [[1.0, 2.0, 3.0, 4.0],
... [5.0, 6.0, 7.0, 8.0],
... [9.0, 10.0, 11.0, 12.0],
... [13.0, 14.0, 15.0, 16.0]]
... ]], requires_grad=True) # Shape: (1, 1, 4, 4)
>>> avg_pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
>>> output = avg_pool(input_tensor) # Shape: (1, 1, 2, 2)
>>> print(output)
Tensor([[
[[3.5, 5.5],
[11.5, 13.5]]
]], grad=None)
# Backpropagation
>>> output.backward(Tensor([[
... [[1.0, 1.0],
... [1.0, 1.0]]
... ]]))
>>> print(input_tensor.grad)
Tensor([[
[[0.25, 0.25, 0.25, 0.25],
[0.25, 0.25, 0.25, 0.25],
[0.25, 0.25, 0.25, 0.25],
[0.25, 0.25, 0.25, 0.25]]
]]) # Gradients with respect to input_tensor
Using `AvgPool2d` with padding:
>>> import lucid.nn as nn
>>> input_tensor = Tensor([[
... [[1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]]
... ]], requires_grad=True) # Shape: (1, 1, 3, 3)
>>> avg_pool = nn.AvgPool2d(kernel_size=2, stride=1, padding=1)
>>> output = avg_pool(input_tensor) # Shape: (1, 1, 2, 2)
>>> print(output)
Tensor([[
[[1.5, 3.5],
[4.5, 6.5]]
]], grad=None)
# Backpropagation
>>> output.backward(Tensor([[
... [[1.0, 1.0],
... [1.0, 1.0]]
... ]]))
>>> print(input_tensor.grad)
Tensor([[
[[0.25, 0.5, 0.25],
[0.5, 1.0, 0.5],
[0.25, 0.5, 0.25]]
]]) # Gradients with respect to input_tensor
Integrating `AvgPool2d` into a Neural Network Model:
>>> import lucid.nn as nn
>>> class AvgPool2dModel(nn.Module):
... def __init__(self):
... super(AvgPool2dModel, self).__init__()
... self.conv1 = nn.Conv2D(in_channels=1, out_channels=1, kernel_size=3, stride=1, padding=1)
... self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
... self.fc = nn.Linear(in_features=1 * 2 * 2, out_features=1)
...
... def forward(self, x):
... x = self.conv1(x)
... x = self.avg_pool(x)
... x = x.view(x.size(0), -1)
... x = self.fc(x)
... return x
...
>>> model = AvgPool2dModel()
>>> input_data = Tensor([[
... [[1.0, 2.0, 3.0, 4.0],
... [5.0, 6.0, 7.0, 8.0],
... [9.0, 10.0, 11.0, 12.0],
... [13.0, 14.0, 15.0, 16.0]]
... ]], requires_grad=True) # Shape: (1, 1, 4, 4)
>>> output = model(input_data)
>>> print(output)
Tensor([[[...]]], grad=None) # Output tensor after passing through the model
# Backpropagation
>>> output.backward(Tensor([[[1.0]]]))
>>> print(input_data.grad)
Tensor([[
[[0.25, 0.25, 0.25, 0.25],
[0.25, 0.25, 0.25, 0.25],
[0.25, 0.25, 0.25, 0.25],
[0.25, 0.25, 0.25, 0.25]]
]]) # Gradients with respect to input_data