efficientnet_b1¶
- lucid.models.efficientnet_b1(num_classes: int = 1000, **kwargs) EfficientNet ¶
The efficientnet_b1 function creates an instance of the EfficientNet-B1 model, a lightweight and efficient convolutional neural network preconfigured with parameters suitable for EfficientNet-B1.
Total Parameters: 7,795,560
Function Signature¶
@register_model
def efficientnet_b1(num_classes: int = 1000, **kwargs) -> EfficientNet:
Parameters¶
- num_classes (int, optional):
The number of output classes for the classification task. Defaults to 1000 (e.g., for ImageNet).
- kwargs (dict, optional):
Additional keyword arguments passed to the EfficientNet class for further customization.
Returns¶
- EfficientNet:
An instance of the EfficientNet class configured with parameters for EfficientNet-B1.
Examples¶
from lucid.models import efficientnet_b1
# Create an EfficientNet-B1 model
model = efficientnet_b1(num_classes=1000)
# Forward pass with a random input
input_tensor = lucid.random.randn(1, 3, 224, 224) # Batch size of 1, ImageNet resolution
output = model(input_tensor)
print(output.shape) # Output shape: (1, 1000)