mobilenet

lucid.models.mobilenet(width_multiplier: float = 1.0, num_classes: int = 1000, **kwargs) MobileNet

The mobilenet function creates a MobileNet model instance. It supports customizing the width multiplier and the number of output classes for flexibility across various use cases.

Total Parameters: 4,232,008

Function Signature

@register_model
def mobilenet(width_multiplier: float = 1.0, num_classes: int = 1000, **kwargs) -> MobileNet

Parameters

  • width_multiplier (float, optional): Scales the width of the network by adjusting the number of channels in each layer. Default is 1.0, which corresponds to the full model size.

  • num_classes (int, optional): Specifies the number of output classes for classification. Default is 1000, commonly used for ImageNet.

  • kwargs (dict, optional): Additional arguments passed to the MobileNet constructor for further customization.

Returns

  • MobileNet: An instance of the MobileNet model configured with the specified parameters.

Example

import lucid
from lucid.models import mobilenet

# Create a MobileNet model with default parameters
model = mobilenet(width_multiplier=1.0, num_classes=1000)

# Create a sample input tensor
input_tensor = lucid.random.randn(1, 3, 224, 224)

# Perform a forward pass
output = model(input_tensor)
print(output)