yolo_v3_tiny

ConvNet One-Stage Detector Object Detection

lucid.models.yolo_v3_tiny(num_classes: int = 80, **kwargs) YOLO_V3

The yolo_v3_tiny function returns an instance of the YOLO_V3 model configured with a lightweight backbone similar to the official YOLOv3-Tiny design.

Total Parameters: 23,450,997 (MS-COCO)

Function Signature

def yolo_v3_tiny(num_classes: int = 80, **kwargs) -> YOLO_V3

Parameters

  • num_classes (int, default=80): Number of object categories to detect. This controls the number of class predictions per anchor.

  • kwargs: Additional keyword arguments forwarded to the YOLO_V3 constructor.

    Preconfigured values:

    • darknet is set to a lightweight custom _DarkNet_53_Tiny backbone

    • darknet_out_channels_arr=[128, 256, 512] (used to match the 3 feature map channels with head input)

Returns

  • YOLO_V3: A YOLOv3 model instance with reduced complexity and parameter count, optimized for real-time applications and resource-limited environments.

Example Usage

>>> from lucid.models import yolo_v3_tiny
>>> model = yolo_v3_tiny(num_classes=80)
>>> print(model)

>>> x = lucid.rand(1, 3, 416, 416)
>>> out = model(x)
>>> for o in out:
...     print(o.shape)

Note

This Tiny variant uses the same 3-scale detection architecture as the full YOLOv3 model, but with a more efficient backbone. Each detection head processes feature maps of sizes 13x13, 26x26, and 52x52 (for 416x416 input), using 3 anchors per scale.