densenet_264

lucid.models.densenet_264(num_classes: int = 1000, **kwargs) DenseNet

The densenet_264 function constructs a DenseNet-264 model, a specific variant of the DenseNet architecture.

It is configured with four dense blocks, following the layer configuration: (6, 12, 64, 48). This model is well-suited for image classification tasks.

Total Parameters: 33,337,704

Function Signature

def densenet_264(num_classes: int = 1000, **kwargs) -> DenseNet

Parameters

  • num_classes (int, optional): Number of output classes for the final fully connected layer. Default is 1000.

  • kwargs (dict): Additional keyword arguments passed to the DenseNet constructor, such as growth_rate and num_init_features.

Returns

  • DenseNet: An instance of the DenseNet class configured as DenseNet-264.

Examples

Creating a DenseNet-264 model for ImageNet classification:

from lucid.models import densenet_264

model = densenet_264(num_classes=1000)

input_tensor = lucid.random.randn(1, 3, 224, 224)  # Example input
output = model(input_tensor)
print(output.shape)  # Output shape: (1, 1000)