inception_next_base¶
- lucid.models.inception_next_base(num_classes: int = 1000, **kwargs) InceptionNeXt ¶
The inception_next_base function instantiates an InceptionNeXt-Base model, a standard variant of the InceptionNeXt architecture optimized for high accuracy and robust feature extraction in deep learning tasks.
Total Parameters: 86,748,840
Function Signature¶
@register_model
def inception_next_base(num_classes: int = 1000, **kwargs) -> InceptionNeXt
Parameters¶
num_classes (int, optional): Number of output classes for the final classification layer. Defaults to 1000.
kwargs (dict, optional): Additional arguments to customize the model configuration.
Returns¶
InceptionNeXt: An instance of the InceptionNeXt model configured as the small variant.
Example¶
from lucid.models import inception_next_base
# Instantiate InceptionNeXt-Small
model = inception_next_base(num_classes=1000)
# Forward pass with a random input
input_tensor = lucid.random.randn(1, 3, 224, 224)
output = model(input_tensor)
print(output.shape) # Output shape: (1, 1000)