inception_resnet_v2¶
- lucid.models.inception_resnet_v2(num_classes: int = 1000, **kwargs) InceptionResNet ¶
Overview¶
The inception_resnet_v2 function implements the Inception-ResNet v2 architecture, which builds on Inception-ResNet v1 with deeper layers and improved efficiency. This model leverages the advantages of Inception modules and residual connections for enhanced performance on complex image classification tasks.
This function returns a preconfigured InceptionResNet model optimized for use in various applications, while allowing for flexibility in the number of output classes and other customizations.
Total Parameters: 35,847,512
Function Signature¶
@register_model
def inception_resnet_v2(
num_classes: int = 1000,
**kwargs,
) -> InceptionResNet
Parameters¶
num_classes (int, optional): The number of output classes for the final classification layer. Default is 1000.
kwargs (dict, optional): Additional arguments passed to the underlying InceptionResNet base class or components.
Returns¶
InceptionResNet: An instance of the InceptionResNet model configured for the v2 architecture.
Example Usage¶
Below is an example of defining and using the inception_resnet_v2 function:
import lucid.models as models
# Create an Inception-ResNet v2 model with default parameters
model = models.inception_resnet_v2(num_classes=1000)
# Sample input tensor (e.g., batch of 299x299 RGB images)
input_tensor = lucid.Tensor([...])
# Forward pass
output = model(input_tensor)
print(output)