maxvit_small¶
The maxvit_small function constructs a compact yet more expressive variant of the MaxViT model. Compared to maxvit_tiny, it increases channel width, enabling stronger representational capacity while maintaining efficiency.
Total Parameters: 55,757,304
Function Signature¶
def maxvit_small(
in_channels: int = 3,
num_classes: int = 1000,
**kwargs
) -> MaxViT
Parameters¶
in_channels (int, optional): Number of input image channels. Default is 3.
num_classes (int, optional): Number of output classes for classification. Default is 1000.
kwargs (any): Additional keyword arguments passed to the
MaxViT
constructor.
Model Configuration¶
This preset uses the following setup:
depths: (2, 2, 5, 2)
channels: (96, 192, 384, 768)
embed_dim: 64
Example¶
import lucid
from lucid.models.transformer import maxvit_small
model = maxvit_small()
input_tensor = lucid.randn(1, 3, 224, 224)
output = model(input_tensor)
print(output.shape) # (1, 1000)
Tip
Use **kwargs to override components such as activation, norm layers, or dropout.