maxvit_xlarge¶
The maxvit_xlarge function returns the highest capacity variant of the MaxViT architecture. It significantly increases both depth and channel width, making it ideal for high-resolution datasets and demanding image classification tasks.
Total Parameters: 383,734,024
Function Signature¶
def maxvit_xlarge(
in_channels: int = 3,
num_classes: int = 1000,
**kwargs
) -> MaxViT
Parameters¶
in_channels (int, optional): Number of input channels (e.g., 3 for RGB images). Default is 3.
num_classes (int, optional): Number of output classes for classification. Default is 1000.
kwargs (any, optional): Additional keyword arguments passed to the
MaxViT
constructor.
Model Configuration¶
This xlarge variant is configured as:
depths: (2, 6, 14, 2)
channels: (192, 384, 768, 1536)
embed_dim: 192
These values offer maximum feature capacity, especially suitable for large-scale datasets.
Example¶
import lucid
from lucid.models.transformer import maxvit_xlarge
model = maxvit_xlarge()
input_tensor = lucid.randn(1, 3, 224, 224)
output = model(input_tensor)
print(output.shape) # (1, 1000)
Warning
Due to its large number of parameters, this model is recommended for use on powerful hardware (e.g., GPU or Apple Silicon with MLX backend).